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Abstract. We present theoretical calculations for the reflection of atoms from a magnetic surface with a
sinusoidal magnetization. A fully quantum mechanical treatment is possible because the problem may be
reduced to an effective one-dimensional one. Results of numerical wave-packet calculations are presented
and compared with an analytical model in which the atoms separate into different internal state components
which follow classical paths in different potentials.
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1 Introduction

Techniques to cool atoms and to manipulate atomic mat-
ter waves have lead to the field of atom optics, where a
host of theoretical and experimental results have been ob-
tained in the past few years [1–3]. Atomic interferometers
have been applied for measurements of inertial effects and
of atomic parameters with unprecedented precision, and
optical, electric and magnetic fields have been applied to
guide and to hold atoms for several purposes.

Many studies have been carried out both theoretically
and experimentally for atomic reflection from evanescent
wave laser fields. Some effort has been made to investigate
the behaviour of multi-(Zeeman)-level atoms, and the pos-
sible coherent transfer of amplitude among such levels has
been identified as an effective means to produce coherent
superpositions of matter waves with different propagation
directions [4,5]. It has been shown that a corrugated prism
surface causes non-specular reflection of the atoms, and
that this effect, surprisingly, persists even when the turn-
ing point for the atomic motion is high above the prism
surface [6].

We present here an analysis of the reflection of atoms
by the magnetic field above a sinusoidally magnetized sur-
face. This system was proposed and analyzed by Opat
et al. [7], in the so-called adiabatic limit, where the dipole
moment of the atom follows the direction of the magnetic
field, and where the reflection potential is thus a simple
exponential function of the height above the magnetic sur-
face. Experimentally it is easy to ensure the validity of
the adiabatic analysis [8, 9], hence, ideally, the scattering
is specular and un-problematic from a theoretical point
of view. Within the adiabatic approximation, deviations
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from the specular reflection due to imperfections in the
magnetization of the mirror have been determined and
found to agree with experimental observation [10,11].

Deviation from adiabaticity ruins the simplest picture
of the scattering process but, like in the case of scatter-
ing by an evanescent field, it provides a number of at-
tractive possibilities for coherent matter wave dynamics.
We analyze in this paper the original proposal for the
magnetic mirror based on the sinusoidal magnetization
of the magnetic material, but we assume parameters for
the atomic motion for which the adiabatic approximation
is not valid. We show that the full quantum mechanical
problem can be reduced by a transformation to an ef-
fective one-dimensional reflection problem, which is not
more complicated than scattering in the adiabatic poten-
tial. Our calculations include the transfer of amplitude
among the Zeeman sublevels of the atoms, and a classical
model from collision theory is proven to account excel-
lently for the result obtained from a quantum mechanical
wave-packet propagation.

The organization of this paper is as follows. In
Section 2 we briefly present the basic theory behind mag-
netic mirrors. In Section 3 we present our reduction of
the problem to one dimension and our results for the re-
flection coefficient obtained by wavepacket simulation. In
Section 4 we present our mapping of the problem on a
simple level crossing model. The problem of diffraction is
treated in Section 5 and we conclude in Section 6.

2 Magnetic mirrors

The basic principle behind magnetic mirrors is the inter-
action between a magnetic field with some suitable vari-
ation in space and the magnetic moments of the atoms.
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Several realizations are possible, e.g., the magnetic field
above an array of current carrying wires [7,12,13], but in
this paper we shall consider the field above a surface with
permanent magnetization. This approach has been used
in the early experimental work and can be implemented
by simply recording a periodic pattern on a commercial
storage medium (audiotape or floppy disc). As shown in
this section such a simple magnetization leads to a mag-
netic field which decreases exponentially with the distance
to the surface.

2.1 The magnetic field above a surface with periodic
magnetization

Let us assume that we are given an infinite, flat and pe-
riodically magnetized surface aligned with the xz-plane
in our coordinate system. The magnetization is constant
along lines of constant x, and in the region above the sur-
face we have no currents. Then the magnetic field is only
a function of x and y and it can be derived from a scalar
potential [14]:

B(x, y) = −∇Φ(x, y). (1)

Φ(x, y) is determined (up to a constant) by the Laplace
equation and the boundary conditions induced via B(x, y).

Let us take Φ at the surface to be a single harmonic,

Φ(x, 0) = A cos(κx). (2)

This potential would correspond to, e.g., an (infinitely
thick) audio tape with a recorded sine-wave signal where
2π/κ is the wavelength. It then follows from complex
function theory that

Φ(x, y) = Re
(
Aeiκ(x+iy)

)
= A cos(κx)e−κy (3)

above the surface, and that

Bx(x, y) = Aκ sin(κx)e−κy

By(x, y) = Aκ cos(κx)e−κy . (4)

For details, see [7]. Note the simple dependence on x and
y: the direction of the field rotates as we move along the
surface while the magnitude of the field decreases expo-
nentially as we move away from the surface.

2.2 Motion of a neutral atom

The interaction of the atom with the magnetic field can
be described by a potential energy operator of the form

V̂ (x, y, z) = −µ̂ ·B(x, y, z) (5)

where µ̂ is the atomic magnetic moment operator acting
on the electronic degrees of freedom. For sufficiently weak
fields it takes on the well-known form of the anomalous
Zeeman effect:

µ̂ = −gjµB

~
Ĵ. (6)

The gj is the Landé factor depending only on the fine
structure level of the atom.

The coupling of the magnetic moment of the atom with
a spatially dependent magnetic field introduces a coupling
between the internal and centre-of-mass degrees of free-
dom for the atom. The usual resort to the adiabatic the-
orem assumes that the magnetic moment of the atom re-
tains its projection along the direction of B as the atom
moves. In this picture it is easy to understand qualita-
tively the motion of an atom. Depending on the sign of
the projection of its total angular momentum, J, on the
magnetic field it will be either low field seeking or high
field seeking, its potential energy increasing or decreasing
with field strength. One can then readily design a mir-
ror for low field seekers; it is merely a question of having
a sufficient increase in B when the atom approaches the
mirror surface. If the reflection is going to be specular
it is a further demand that the equipotentials (i.e. sur-
faces of constant |B|) are planes. The field configuration of
Section 2.1 satisfies this requirement despite the rotation
of the direction of B as a function of x.

3 Quantum treatment of motion

The adiabatic approximation is both convenient and in
most situations well justified [8,9]. It is, however, not too
difficult to go further as will be shown in the following
sections. In particular, it is quite easy to make a full quan-
tum mechanical analysis, even in case of a non-constant
direction of B along the surface.

3.1 Reduction to 1D problem

The Hamiltonian of an atom moving in a magnetic field
will be taken to be

Ĥ =
p̂2

2M
− µ̂ ·B (7)

where M is the mass of the atom and p̂ is the atomic mo-
mentum. The problem is effectively two-dimensional as we
have assumed only x- and y-dependence of the magnetic
field so that the third dimension is separable from the
other two. Using the Zeeman form of µ̂ from (6) and the
magnetic field of (4) we can write:

−µ̂ ·B = V0e−κy
[
Ĵx sin(κx) + Ĵy cos(κx)

]
. (8)

We now realize that the form of Ĥ only allows certain
momentum transfers in the x-motion and only at the ex-
pense of an accompanying change in the internal state of
the atom. To see this explicitly we rewrite the parenthesis
in (8) as

Ĵx sin(κx) + Ĵy cos(κx) =

Ĵ+ + Ĵ−
2

sin(κx) +
Ĵ+ − Ĵ−

2i
cos(κx)

=
1
2i

(Ĵ+eiκx − Ĵ−e−iκx). (9)
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From this we deduce that it is advantageous to expand
the centre-of-mass x-dependence and the internal state
dependence on the families of basis states of the form

ei(px+m~κ)x/~|m〉; m ∈ {−j, . . . , j}. (10)

This is a mixed notation where the center-of-mass motion
is described by a plane wave, while the internal state of the
atom is represented as a state vector, |m〉, m~ denoting
the Ĵz eigenvalue. px labels the families and m labels the
2j + 1 states in each family. Note that all members of a
family has different center-of-mass momenta, px merely
denoting the central value. It is easy to show from (9)
that µ̂ · B does not couple states from different families
and that the coupling inside a family is formally analogous
to Ĵy = (1/2i)(Ĵ+ − Ĵ−) in a usual angular momentum
multiplet.

The family states of (10) are eigenstates of the x
component of momentum and they diagonalise the cor-
responding part of the kinetic energy operator:∫

dx〈m′|e−i(p′x+m′~κ)x/~ p̂
2
x

2M
ei(px+m~κ)x/~|m〉 =

(px +m~κ)2

2M
2π~ δ(px − p′x)δm′m. (11)

Writing the wave-function as

Ψ(x, y) =
∫

dpx√
2π~

j∑
m=−j

φpx,m(y)ei(px+m~κ)/~|m〉 (12)

it is thus possible to reduce the problem to a spatially one-
dimensional one with px entering only as a parameter. For
each family, we get the 2j + 1 coupled equations

i~
∂

∂t
φpx,m′(y, t) =(

− ~
2

2M
∂2

∂y2
+

(px +m~κ)2

2M

)
φpx,m′(y, t)

+
j∑

m=−j
V0e−κy〈m′|Ĵy|m〉φpx,m(y, t). (13)

To summarize we can write equation (13) in the form:

i~
∂

∂t
|φ〉 = Ĥ1D|φ〉 (14)

where |φ〉 is the state vector of a spin-j particle moving in
one spatial dimension and subject to the Hamiltonian

Ĥ1D =
p̂2
y

2M
+

p2
x

2M
+

(~κ)2

2M
Ĵ2
z +

px~κ
M

Ĵz + V0e−κyĴy.

(15)

Note how the motion along the x-axis is incorporated by
means of a constant kinetic energy term (p2

x/2M) and a
fictitious magnetic coupling (pxĴz, Ĵ2

z terms).
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Fig. 1. Wave-packet simulation of a j = 2 atom interacting
with a magnetic mirror. Shown is the squared norm of the
wavefunction. The initial wavepacket at t = 0 is purely m =
+2 and has a momentum spread of 2~κ around py = −15~κ.
The family momentum is px = 3~κ and the mirror strength is
V0 = 800(~κ)2/M .

3.2 Wave-packet propagation

With the reduction to one spatial dimension it is possible
to do a numerical wave packet propagation for small values
of j. We have used the split-step technique [15] based on
the approximation for the propagator

e−i
Ĥ1D
~ dt ∼= e−i

p̂2

2M~dte−i
V̂
~ dt. (16)

The kinetic energy operator can in this way be applied
after a FFT to momentum space where it is simple. As
for the potential part we are faced with the problem of
exponentiating the Ĵy-part which is not diagonal in m
and is therefore simple neither in direct nor in momentum
space. Remember, however, that Ĵy is the generator of
rotation about the y-axis. All we have to do is thus to
calculate the corresponding Wigner rotation matrix D(j)

m′m
and apply this to the multiplet φpx,m.

A particular concern when doing this wave packet
calculation is how to simulate the absorption/incoherent
scattering of the parts of the wave that actually reach
the surface. Even an imaginary potential will cause some
reflection so we have chosen to simply symmetrise the po-
tential allowing the components of the wave moving on at-
tractive potential curves to continue through the mirror.
This also allows us to use norm conservation as a check
throughout the simulation. We have of course varied the
parameters to test independence of our results on the ex-
act details of the potential at and behind the surface.

In Figure 1 is shown a plot of a typical calculation for
j = 2. The wavepacket starts out in the m = +2 state. At
some point there is a non-adiabatic transfer to other states
and soon hereafter reflection takes place. These stages are
of course not clearly separable on a wavepacket plot but as
we shall see later such a line of events provides surprisingly
good analytical predictions for the reflection coefficient.

4 Classical approximation and two-state
model

In order to get a more intuitive understanding of the
reflection process it is useful to make a classical model.
The simplest approximation consist in treating the centre-
of-mass motion of the atom classically, i.e., by a trajectory
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Fig. 2. Adiabatic potential curves for a neutral j = 2 atom
approaching a magnetic mirror. The family momentum (see
Eq. (10)) is px = 5~κ and V0 = 800(~κ)2/M . The adiabatic po-

tential curves correlate with the Ĵz eigenstates for yκ� 1 and
with the Ĵy eigenstates for yκ � 1. In these limits and bases
the curves are correctly labelled by the m quantum number in
the legend. Note that the transformation px → −px reverses
the order of the Ĵz-eigenstates far from the mirror.

y(t). The internal state of the atom then experiences a
time-dependent Hamiltonian and the atom is subject to a
mean force and acceleration, determined from the spatial
derivative of the coupling to the field. The atom can also
be subject to external forces, e.g., gravity or for an ion
electrostatic forces, which do not depend on the internal
state. This approach is justified when the kinetic energy
of the atom dominates any terms in the Hamiltonian de-
pending on the internal state of the atom.

The adiabatic model deals with a somewhat different
regime. Here one acknowledges that the internal states
have an important effect in determining the potential that
the atom experiences. In order for this potential to be well
defined it is then necessary to assume that the internal
state will follow changes in the Hamiltonian adiabatically.
This will be the case if the Hamiltonian changes suffi-
ciently slowly. Note that the adiabatic model does not pre-
vent a fully quantum mechanical treatment of the centre-
of-mass motion: it merely translates the coupling of the
inner state to a varying field into potential curves for this
motion. A plot of the adiabatic potential curves for the
problem is shown in Figure 2. Close to the surface the ex-
pontial function dominates and the adiabatic states are Ĵy
eigenstates. Far from the mirror the adiabatic states are
Ĵz eigenstates but their ordering in energy depends on px.

We treat the motion classically on these adiabatic po-
tential curves and divide the reflection of an atom into a
number of distinct phases:

– free motion treated classically; internal state evolves
adiabatically;

– coupling zone with non-adiabatic transfer; all poten-
tial curves are relatively flat, and the centre-of-mass
motion is treated as classical and free; the internal
state experiences a time-dependent Hamiltonian;

– reflection of the components on repulsive energy

curves; motion is again adiabatic, but we track differ-
ent internal state components of the atom along dif-
ferent paths;

– after the reflection a second passage of the coupling
region; interference determines the population on out-
going adiabatic states.

The most demanding part is the integration of 2j + 1
coupled equations in the coupling zone. Fortunately, as
we shall see, it is possible to get an excellent analytical
prediction for this problem.

4.1 Exponential level crossing model

We treat the centre-of-mass motion classically so the in-
ternal part of the Hamiltonian (15) looks like

Ĥinternal =
(~κ)2

2M
Ĵ2
z +

px~κ
M

Ĵz + V0e−κy(t)Ĵy. (17)

Now if we exclude very small px the Ĵ2
z -term is negligi-

ble and the evolution generated by the Hamiltonian is
just a rotation of the spin, the well-known spin precession
around an applied magnetic field. With this knowledge all
we really have to keep track of is the three Euler angles
corresponding to this rotation. Direct equations for these
angles are quite complicated but an elegant way to get
simple substitutes is to note that if we propagate a spin-
1/2 subject to (17) (without the Ĵ2

z -term) it will undergo
exactly the same rotation as any other spin-j. From the in-
tegration of just two coupled equations for the m = ±1/2
state amplitudes we therefore gain complete knowledge
of the Euler-angles and hence the solution of the original
2j + 1-equation problem. This approach is described by
Kazansky and Ostrovsky in [16] and has roots all the way
back to Majorana who analyzed the dynamics of a gen-
eral angular momentum j in a varying magnetic field in
terms of geometric rotation [17]. In [18] an N -level model,
equivalent with this problem, is formally solved in terms of
Wigner rotation functions with specified rotation angles,
and references are given to other models where the N -level
dynamics is determined by the solution of a coupled pair
of equations, but without the straightforward picture of
spin rotation (see also [19]).

Writing down the spin-1/2 two-state problem is only
a matter of inserting the Pauli-matrices:

i~
∂

∂t
χ(t) =


1
2
ωz −

i
2
ωy(t)

i
2
ωy(t) −1

2
ωz

χ(t) (18)

where

ωz ≡
κpx
M

, ωy(t) ≡ V0e−κy(t). (19)

If y(t) is taken to be a simple motion at constant speed

y(t) = y0 + vy0t (20)
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the problem can be recognized as a special case of the
Nikitin or exponential level crossing model [20] describ-
ing population transfer among electronic states in atomic
collisions.

Letting time run from −∞ to ∞1 Nikitin provides an-
alytical expressions for both the asymptotic populations
on the adiabatic states as well as the dynamic phases ac-
cumulated. From these we extract the Euler angles, the
most important being the polar angle β:

cos
β

2
=
√

1− P(ξ) sin
β

2
=
√

P(ξ)

P(ξ) =
1− e−πξ

eπξ − e−πξ
(21)

where

ξ =
px
|Mv0y|

=
px
|py0|

· (22)

Once we have found the Euler rotation that a particle
with magnetic dipole moment experiences when passing
the coupling zone it is simple to calculate the reflection
coefficient of the surface for a given initial state. We sim-
ply apply the appropriate Wigner rotation matrix to the
initial state vector and then sum the resulting populations
on repulsive potential curves. There is a slight subtlety
here: the populations and phases we get from the Nikitin
model are referring to adiabatic states, i.e., Jz-eigenstates
for yκ� 1 and Jy-eigenstates for yκ� 1. This is conve-
nient as it means that we immediately get the result in the
relevant basis and we are able to tell what will be reflected
and what will be absorbed.

As an example let us consider a j = 1 atom. The
Wigner rotation matrix is given by

D(1)(α, β, γ) =
1+cosβ

2 e−i(α+γ) − sinβ√
2

e−iα 1−cosβ
2 e−i(α−γ)

sinβ√
2

e−iγ cosβ − sinβ√
2

eiγ

1−cosβ
2 ei(α−γ) sinβ√

2
eiα 1+cosβ

2 ei(α+γ)

 . (23)

With an initial state with m = +1

χin =

1
0
0

 (24)

we get

χout = D(1)χin =


1
2 (1 + cosβ)e−i(α+γ)

1√
2

sinβe−iγ

1
2 (1− cosβ)ei(α−γ)

 . (25)

1 The level crossing model is analytically solvable for an in-
finite time interval, but the results apply to our problem as
well, because the population transfer in the infinite time model
occurs entirely in a narrow coupling region.
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Fig. 3. Nikitin model prediction (line) together with
wavepacket results (points) for the reflection coefficient when
a j = 2 atom initially in m = +2 interacts with a magnetic
mirror with V0 = 800(~κ)2/M . The Nikitin model predict R
to be a function of ξ = px/|py0| only. The discrepancy between
the analytical result and the wavepacket calculations at a given
ξ is reduced as py0 and px are increased. This is expected from
the reduced importance of the J2

z -term.

The amplitudes in (25) are given in the basis of poten-
tial eigenstates close to the mirror and the first amplitude
refers to the repulsive potential curve. The reflection co-
efficient of the mirror thus becomes

R(1) =
1
4

(1 + cosβ)2 = (1− P(ξ))2. (26)

For other values of j completely analogous calculations
can be made. Wigner rotation matrices for higher j are
tabulated or they can be computed by Wigner’s for-
mula [21]. For any incident state χin, it is thus easy to
get χout, the state after the coupling zone. If all repulsive
curves exceed the incident energy, the reflection probabil-
ity equals the sum of the population of states with pos-
itive m-values in χout. If, in particular, the initial state
has m = j these populations have the following simple
analytical expressions:

|χout,m|2 =

(
2j

j +m

)
(1− P (ξ))j+mP (ξ)j−m. (27)

Figure 3 shows a plot of the reflected fraction |χout,2|2 +
|χout,1|2 for j = 2 together with results of a number of
wavepacket runs with varying px. As expected our model
is closest to the full calculation when px is large. This is
the regime where it is well justified to neglect Ĵ2

z . The
reasonable overall agreement leads us to conclude, that
the classical treatment of the centre-of-mass degrees of
freedom is a good approximation.

As Figure 3 illustrates the adiabatic regime in our 1D
problem is the regime of numerically large ξ: an atom
initially in a state with positive m and positive px ap-
proaches the mirror on a repulsive adiabatic potential
curve (see Fig. 2 and Eq. (17)) and as expected a large
separation of the curves (large px) and a slow approach
(small py0) will force it to adiabatically follow this curve
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and to be reflected. If we reverse the sign of px the order
of the adiabatic curves far from the mirror is reversed and
the atom is instead on an attractive adiabatic curve. This
has the effect that an atom in an extreme Ĵz eigenstate
and with sufficient x-momentum is either reflected or ab-
sorbed with 100% efficiency depending on the sign of the
product mzpx.

4.2 Mean field inclusion of Ĵ2
z

As we saw in the previous section it is possible to get
reasonable predictions for the reflection by the mirror by
treating the external motion classically, neglecting the J2

z
term in (17) and extracting the evolution as Euler an-
gles from a two state level crossing model. To include the
J2
z term one would have to solve the set of 2j + 1 equa-

tions numerically which would still be a manageable task.
Here, however, we want to present an efficient approxi-
mate inclusion of this term, retaining the simple two-level
treatment and the appealing picture of the evolution as a
rotation.

As far as rotations are concerned a spin of length j can
always be viewed as made up of 2j independent spin-1/2
particles

Ĵz =
2j∑
i=1

Ĵzi. (28)

Exposed to a magnetic field the spins evolve indepen-
dently and we only need to follow one spin to solve the
full problem. This is another way of stating the method of
Section 4.1. We now want to include the Ĵ2

z term approx-
imately. We therefore write

Ĵ2
z =

∑
i

Ĵ2
zi +

∑
i,k
k 6=i

ĴziĴzk (29)

and observe that for each spin-1/2, Ĵ2
zi is proportional to

the identity. The effect of the last term, coupling the spins,
can be incorporated in a Hartree, or mean field treatment
by the approximation∑

k 6=1

Ĵz1Ĵzk → (2j − 1)〈Ĵz1〉Ĵz1. (30)

where 〈Ĵz1〉 is the mean value, determined in the self-
consistent state of the fictitious spin-1/2 system. Note that
as the evolution is no longer linear we have to do the
integration once for each initial state to be considered. An
example of the correction due to this non-linear treatment
is shown in Figure 4. It accounts perfectly for the small
difference between the exact calculation and the simple
Nikitin model.

5 Diffraction

In the previous section we were only interested in how
large a fraction of an incoming wavepacket is reflected.

Full wavepacket propagation
Mean �eld treatment of Ĵ2

z
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Fig. 4. Effect of mean field inclusion of the Ĵz
2
-term. The

physical parameters are: j = 2, py0 = −10~κ and V0 =
800(~κ)2/M . The deviation of the full wavepacket results from
the simple Nikitin model is nicely explained by making the
minimum extension: we still make the classical approximation
and assume the evolution to be a rotation of the spin, but we

approximate the Ĵz
2

term in the Hamiltonian by the mean field
like term (30).

In the adiabatic regime all atoms stay on their initial po-
tential curve and are either absorbed or reflected and leave
the mirror in the same internal state as they started in. In
the vicinity of ξ = 0 nonadiabatic effects are important,
and parts of each wavepacket are transfered to other adi-
abatic potential curves on the way in and on the way out
again. Atoms which leave the mirror in different m-states
also have different momentum components along the x-
axis, cf. equation (10). Energy conservation implies that
also their momentum along the y-axis is different. This
phenomenon is a kind of diffraction (note that the centre-
of-mass motion is entangled with the internal state), and
the population of different diffraction orders is determined
by the population of different internal states.

We write the evolution of the internal atomic state as

χfinal = UoutRUinχin (31)

where Uin and Uout describe the effect of the coupling
zone and R is a matrix describing the accumulated phases
on the sufficiently repulsive potential curves and the ab-
sorption of the remaining components of the wavefunc-
tion. The U matrices for internal state amplitudes are in
the adiabatic basis given by the Wigner rotation matrices
D(j)(α, β, γ) of Section 4 (cf. comment below Eq. (22)).
In this basis, corresponding to Ĵy eigenstates close to the
surface, R is diagonal:

Rmymy ′ = δmm′Θ

(
myV0 −

p2
y0

2M

)
eiφmy . (32)

The Heaviside function ensures that the adiabatic poten-
tials only reflect particles if they exceed the incident ki-
netic energy. In our calculations we always take V0 large
enough to reflect atoms in all states with positive my.

As shown in Section 4 the Wigner rotation matrix cor-
responding to Uin can be calculated analytically via the
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Fig. 5. Population on the three reflected Zeeman components
when a j = 1 atom interacts with a mirror. The symbols rep-
resent the results of the full wavepacket calculation, the curves
represent the analytical results (34) from the Nikitin model.
Here py0 = −10~κ and V0 = 800(~κ)2/M .

Nikitin level crossing model. Uout is the result of the same
sequence of infinitesimal rotations as Uin but in opposite
order of appearance. This means that Uout in the adiabatic
basis is given by:

(D(−α,−β,−γ))−1 = D(γ, β, α). (33)

Evaluation of the final state is simple for both spin-1/2
and spin-1. In these cases there is only one repulsive curve
and thus no interference can take place and we do not have
to keep track of phases. Starting, e.g., from an m = +1
state in the j = 1 case we get:

|χfinal
m |2 = |d(1)

m1|2|d
(1)
11 |2

=


(1− P (ξ))4

m = +1

2 (1− P (ξ))3
P (ξ) m = 0

(1− P (ξ))2
P (ξ)2 m = −1

(34)

P (ξ) is the function introduced in (21). A plot of these
curves is shown in Figure 5 together with the correspond-
ing wavepacket results. The agreement is seen to be very
satisfactory.

6 Conclusion

We have in this paper developed the theory for scattering
of atoms by a sinusoidally magnetized mirror. We have
reduced the quantum problem to a one-dimensional wave-
packet problem, for which numerical results have been
obtained for wide ranges of collision parameters. The
quantum treatment was supplemented by a classical de-
scription, where internal state amplitudes for the atoms
were given analytically by the Nikitin model for slow
atomic collisions, and where the atomic motion was split
according to the distribution on internal states. In this
model, the results depend only on the ratio px/py0 and
on j, and the analytical results of this treatment are

in excellent agreement with those of the quantum for-
mulation of the problem. This agreement was verified for
|py0| = 10~κ and 15~κ. If the surface magnetization has
a period of order of a micrometer, sodium atoms with
these momenta have velocities of tens of cm/s, which is
experimentally obtainable by dropping the atoms from a
MOT above the mirror. The agreement with the quantum
calculation should be even better for larger values of the
momenta.

Our theory supplements previous works which have
concentrated on cases where the internal state follows the
direction of the magnetic field adiabatically, and where
the problem reduces to a scalar reflection problem. For
the construction of perfect mirrors it is not difficult to
fulfill the adiabaticity criterion. In practice, one applies a
homogeneous magnetic field in the entire region above the
surface, which ensures a splitting of the asymptotic poten-
tial curves in Figure 2. If such a guiding field is along the
z-axis it is easily included in our treatment of the reflection
process. Adding gJµBBz Ĵz/~ to the Hamiltonian (17), we
find that the results of Section 4.1 still hold but with
ξ = px/py0 replaced by ξ = (px + gJµBBzM/κ)/py0.

Our work, and further work along the lines of the
present paper, should contribute to ideas for making more
use of the multi-level structure of the atoms, e.g., for
diffraction or spatial sorting of atoms according to their
internal state.
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